NIH Licenses New MRI Technology That Produces Detailed Images Of Nerves, Other Soft Tissues

Thalamus zhil at
Sat Aug 3 22:37:04 EST 2002

Now they're getting somewhere !!.


NIH Licenses New MRI Technology That Produces Detailed Images Of Nerves,
Other Soft Tissues

A new technology that allows physicians and researchers to make detailed,
three-dimensional maps of nerve pathways in the brain, heart muscle fibers,
and other soft tissues has been licensed by the National Institutes of
Health (NIH). The new imaging technology, called Diffusion Tensor Magnetic
Resonance Imaging (DT-MRI) was invented by researchers now at the National
Institute of Child Health and Human Development (NICHD). DT-MRI may allow
physicians and researchers to better understand and diagnose a wide range of
medical conditions such as stroke, amyotrophic lateral sclerosis (Lou Gehrig
's disease), multiple sclerosis (MS), autism, attention deficit disorder
(ADD), and schizophrenia. NIH has signed an agreement with GE Medical
Systems, licensing them to produce and market the product.
"NIH's mission is to support research that improves the health of the
public," said Duane Alexander, M.D., Director of NICHD. "The recent
licensing of DT-MRI ensures that the technology produced as a result of NIH
research is further developed and marketed to medical institutions where
patients can benefit from its use."

Like conventional MRI, DT-MRI is a technology that produces high quality 3-D
images of the inside of the body, painlessly, non-invasively, and without
using contrast agents or dyes. In addition, DT-MRI produces sophisticated
images of soft tissues by measuring the three-dimensional random motion of
water molecules (diffusion) within the tissues.

Although water may appear placid in a jar or cup, individual water molecules
are constantly in motion, colliding with each other at extremely high
speeds. These high-speed collisions cause the water molecules to spread out,
or diffuse, similar to the way a drop of dye placed in a jar of water
spreads in a spherical pattern. In some tissues, such as gray matter in the
brain, water also diffuses in an approximately spherical pattern. In
contrast, in tissues containing a large number of parallel fibers, such as
skeletal muscle, cardiac muscle, and brain white matter, water diffuses
fastest along the direction in which the fibers are pointing, and slowest at
right angles to it. DT-MRI uses this information to produce intricate
three-dimensional images of the tissue's architectural organization and
local structure.

Changes in tissue properties that can be measured with DT-MRI can often be
correlated with processes that occur in development, degeneration, disease
and aging. As a result, doctors and scientists can use DT-MRI to diagnose
and assess a growing number of diseases and better understand how tissues in
the body function.

Since its invention, DT-MRI has had a wide range of applications. Scientists
and clinicians have used it to map nerve pathways in the brain, diagnose
acute stroke, and determine the effectiveness of new stroke prevention
medications. DT-MRI has also been used to map subtle changes in white matter
in diseases such as Lou Gehrig's Disease, adrenoleukodystrophy (ALD), MS,
and epilepsy. This information has helped scientists and clinicians better
understand the development of these disorders, an important first step in
eventually devising new methods to treat them.

Others are using DT-MRI to assess the type and severity of brain tumors and
to plan the surgical procedure to remove them. For example, brain surgeons
planning tumor removal surgeries are beginning to use DT-MRI images to help
them better distinguish between healthy brain tissue and tumors. Other
researchers are investigating DT-MRI's use in diagnosing and determining the
stage of certain cancers, such as prostate cancer.

DT-MRI has also been used to study cognitive and behavioral disorders, such
as schizophrenia, ADD, and dyslexia. Presently, scientists are using the new
technology to associate these conditions with specific anomalies in brain

"If we could establish a strong connection between an anatomical deficit and
a particular disorder, it might be possible to one day use DT-MRI as a
screening tool," said Peter Basser, Ph.D., principal inventor of DT-MRI and
Chief of the NICHD Section on Tissue Biophysics and Biomimetics.

Pediatric researchers are using DT-MRI to learn more about normal brain
development in infants and children. Other researchers are investigating
DT-MRI's use in assessing head trauma and cardiac abnormalities.

"Licensing technology like DT-MRI benefits the NIH, the private sector, and
the public at large," said Krishna Balakrishnan, Ph.D., MBA, Marketing Group
Leader of NIH's Office of Technology Transfer, "It motivates the business
world to further develop the product invented at NIH and get it to the
public. It also benefits further NIH research by validating its societal

In addition to Peter Basser, Dennis LeBihan and James Mattiello also
contributed to the development of this invention.

The NICHD is part of the National Institutes of Health, the biomedical
research arm of the federal government. The Institute sponsors research on
development, before and after birth; maternal, child, and family health;
reproductive biology and population issues; and medical rehabilitation.
NICHD publications, as well as information about the Institute, are
available from the NICHD Web site,, or from the
NICHD Clearinghouse, 1-800-370-2943; e-mail NICHDClearinghouse at

Editor's Note: The original news release can be found at

More information about the Neur-sci mailing list