TD E/I-minimization & WDB2T

BilZ0r BilZ0r at TAKETHISOUThotmail.com
Mon Apr 7 00:31:54 EST 2003


"KP-PC" <k.p.collins at worldnet.att.net%remove%> wrote in news:mX7ka.49204
$ja4.3113425 at bgtnsc05-news.ops.worldnet.att.net:

> "BilZ0r" <BilZ0r at TAKETHISOUThotmail.com> wrote in message
> news:Xns93566D257ED87BilZ0rhotmailcom at 202.20.93.13...
>| Well why dosn't my system work? and spare me any TD I/E or 2nd law,
> its not
>| relavant.
> 
> In your prior post you said:
> 
>> and if the ratio was important you could
>> then you could just add say 50% more
>> receptors of each kind ( Excit. vs Inhib.)
>> of receptors and you wouldn't alter the
>> ratio, so again, I don't see why this ratio
>> is so important.
> 
> I replied:
> 
> "The added neurons would make the brain larger, increase response
> latencies, and increase energy consumption, all of which would render
> such a brain relatively uncompetitive, and it would not survive under
> evolutionary pressures."
> 
> In a succeeding post, you corrected my error with respect my
> discussing "neurons" instead of referring back to the actual
> "receptors" that you used.
> 
> But it's the sme-old, same-old, thing.
> 
> Invoking =redundant= receptors has the same results as I discussed in
> my reply.

but it dosn't make the brain bigger. and I mean, they do have 
'redundant' receptors in a way. if you think about receptors in inactive 
states.
 
> The TD E/I ratio's "minimization" applyes all the way down to single
> ions.
> 
> And it's not even necessary to state things in terms of the ration.
> One can say that all nervous systems do is 'strive' to minimize
> excitation while simultaneously 'striving' to maximize inhibition.

Okay, so actaully its not a ratio at all then? 

And that wasn't the system I was talking about. I was talking about why 
couldn't a hypothetical nervous system work were the RMP is 0mv, the AP 
threshold is very small, i.e. more sensitive Voltage sensitive channels.



More information about the Neur-sci mailing list